Cars in everyday life
Nowadays it is difficult to imagine life without the automotive industry. Public transportation, private cars and buses at the end of the truck the goods to any kind of shops are an integral part of our everyday life. Moving cars is very comfortable, so it's no surprise that it has now become almost necessary to lead a comfortable life element. Settlement of the simplest things in a quick way, or even trips on shorter routes are really enjoyable when you have your own car or motorcycle. For many people, the same drive various means of transport is a very nice feeling. Moreover, the use of buses or cars is sometimes necessary. Carrying heavy goods they are most often carried out also by means of heavy equipment moving on the roads.
How to take care of the paint?
Among the drivers are very popular preparations, which produce no doubt brilliance of automotive paint. Interestingly, many of these measures not only contains polishing agents, but also agents responsible for applying a protective coating on our car. Thanks to such treatment as pasting of the car, so we can not only improve the aesthetics of the car, but also the fact that the car paint will be preserved. This, in turn, it will be more durable and resistant not only to mechanical damage, but also resistant to corrosion and other adverse to paint processes. Concern for the car paint is so profitable, because we can thereby postpone the need for removal of rust and so on.
Historical facts about electric motor
Perhaps the first electric motors were simple electrostatic devices created by the Scottish monk Andrew Gordon in the 1740s.2 The theoretical principle behind production of mechanical force by the interactions of an electric current and a magnetic field, Amp?re's force law, was discovered later by André-Marie Amp?re in 1820. The conversion of electrical energy into mechanical energy by electromagnetic means was demonstrated by the British scientist Michael Faraday in 1821. A free-hanging wire was dipped into a pool of mercury, on which a permanent magnet (PM) was placed. When a current was passed through the wire, the wire rotated around the magnet, showing that the current gave rise to a close circular magnetic field around the wire.3 This motor is often demonstrated in physics experiments, brine substituting for toxic mercury. Though Barlow's wheel was an early refinement to this Faraday demonstration, these and similar homopolar motors were to remain unsuited to practical application until late in the century.
Jedlik's "electromagnetic self-rotor", 1827 (Museum of Applied Arts, Budapest). The historic motor still works perfectly today.4
In 1827, Hungarian physicist Ányos Jedlik started experimenting with electromagnetic coils. After Jedlik solved the technical problems of the continuous rotation with the invention of the commutator, he called his early devices "electromagnetic self-rotors". Although they were used only for instructional purposes, in 1828 Jedlik demonstrated the first device to contain the three main components of practical DC motors: the stator, rotor and commutator. The device employed no permanent magnets, as the magnetic fields of both the stationary and revolving components were produced solely by the currents flowing through their windings
Źródło: https://en.wikipedia.org/wiki/Electric_motor